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Abstract

Deep learning techniques have attained substantial progress in various face-related tasks, such as face recognition, face
inpainting, and facial expression recognition. To prevent infection or the spread of the virus, wearing of masks in public
places has been mandated following the COVID-19 epidemic, which has led to face occlusion and posed significant
challenges for face recognition systems. Most prominent masked face recognition solutions rely on mask segmentation
tasks. Therefore, segmentation can be used to mitigate the negative impacts of wearing a mask and improve recognition
accuracy. Mask region segmentation suffers from two main problems: there is no standard type of masks that people wear,
they come in different colors and designs, and there is no publicly available masked face dataset with appropriate ground
truth for the mask region. In order to address these issues, we propose an encoder-decoder framework that utilizes a
boundary-aware attention network combined with a new hybrid loss to provide a map, patch, and pixel-level supervision.
We also introduce a dataset called MFSD, with 11601 images and 12758 masked faces for masked face segmentation.
Furthermore, we compare the performance of different cutting-edge deep learning semantic segmentation models on the
presented dataset. Experimental results on the MSFD dataset reveal that the suggested approach outperforms state-of-
the-art, algorithms with 97.623% accuracy, 93.814% IoU, and 96.817% F1-score rate. Our dataset of masked faces with
mask region labels and source code will be available online.
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1. Introduction

The development of deep convolutional neural networks
(CNNs) has attracted considerable interest in face recog-
nition in recent years [1]. Face recognition systems have
been widely used in a variety of applications, including
visual surveillance [2], automated border control [3], ed-
ucation systems [4] and healthcare [5]. Face recognition
technology needs to be more efficient while confronting
obstacles such as varying illumination [6], low resolution
[7], different pose [8], expression change [9] and occlusion
[10, 11, 12].

Occlusion in face recognition refers to the partial or com-
plete obstruction of facial features by objects, accessories,
or other elements. The obstructed areas may contain cru-
cial information for accurate identification. Therefore, oc-
clusion is a significant challenge for facial recognition al-
gorithms. These obstructions can include accessories like
sunglasses, hats, or face masks. Covering or hiding parts of
the face reduces the algorithm’s ability to extract meaning-
ful facial feature, which leads to a decrease in recognition
accuracy.

∗Corresponding author.
Email addresses: sadjadrezvani@shahroodut.ac.ir (Sadjad

Rezvani), Mansoor_fateh@shahroodut.ac.ir (Mansoor Fateh ),
hosseinkhosravi@shahroodut.ac.ir (Hossein Khosravi)

In the context of the COVID-19 pandemic, the
widespread use of face masks has become a common form
of occlusion. Besides, masks allow fraudsters and thieves
to steal and commit crimes without identification. Face
masks cover a substantial portion of the lower face, in-
cluding the mouth and nose. These are crucial regions for
facial recognition algorithms as they often rely on features
like the nose shape, mouth structure, and the distance be-
tween these features for accurate identification. In fact,
Due to the occlusion of human faces by masks, face recog-
nition systems are faced with a serious challenge since ap-
proximately half of the biometric information is lost [13].
Therefore, it is particularly essential to address the chal-
lenges posed by mask-wearing to improve facial recognition
performance.

In general, the issue of masked face recognition systems
mainly consists of four fundamental steps. (1) masked face
detection, (2) Pre-processing of the masked face image, (3)
robust feature extraction, and (4) classification. Masked
face recognition considers a heavy occlusion problem due
to the mask covering almost half of the face. More specifi-
cally, approximately half of the critical facial semantics are
lost, suggesting one’s identity is complicated. As a result,
pre-processing methods play an essential role in extracting
robust features. Two approaches for pre-processing have
been proposed [14]: representation and reconstruction.

In the representation approach, the mask is first seg-
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mented and entirely excluded from the feature extraction.
This method recognizes the face based on the unmasked
facial region [14]. In contrast, reconstruction techniques
tackle the occlusion problem in image space by restoring
facial parts hidden behind the mask to resemble the orig-
inal face image. This recovery process is contingent upon
having a binary segmented region of mask, as emphasized
in previous works [15, 16, 17]. Notably, reconstruction
approaches have demonstrated enhanced recognition per-
formance, particularly for faces with substantial occlusions
like masks [18].

So The most prominent masked face recognition solu-
tions rely on mask segmentation tasks. As a result, seg-
mentation can be used to reduce the negative effects of
wearing a mask and boost recognition accuracy. [19].

Mask segmentation is challenging for the following rea-
sons: (1) There is no standard type of mask that people
wear; it comes in different colors and designs, and (2) there
is no masked dataset with appropriate ground truth for the
mask regions to be used in the training phase. To make
a step forward in masked face segmentation and address
the above challenges, we collect masked face segmentation
datasets. Also, a novel convolutional network framework is
proposed, which is made up of encoders and decoders that
can effectively segment the salient object regions. Specifi-
cally, we adopted the attention gate (AG) mechanism [20]
to enhance the network’s capacity for learning. An atten-
tion gate module was implemented in the skip connection
part to identify salient feature regions further.

Our three main contributions are as follows:
(1) Design and development of an ABANet for highly

accurate image segmentation.
(2) Preparing a dataset for masked face segmentation,

denoted as MFSD, to improve masked face-related task
performance. The dataset consists of 12758 Internet im-
ages, in which 11601 masked human faces are manually
segmented.

(3) A comprehensive review of the proposed model was
conducted, along with a comparison with 10 other segmen-
tation networks

The structure of this paper is as follows: Section 2 pro-
vides a review of recent related research undertaken by var-
ious researchers; Section 3 presents the proposed dataset;
Section 4 explains the model architecture; and Section 5
presents an experiment performed on the MFSD dataset
to demonstrate the effectiveness of the proposed approach;
Section 6 concludes the paper and states the future work.

2. Related work

A new dataset and a novel mask segmentation model are
the major contributions of this work. Therefore, we briefly
review the related works in three aspects. In the begin-
ning, we review some mask region segmentation-related
task approaches. Next, we present attention mechanism
methods. Finally, we review the mask face datasets.

2.1. Mask Region Segmentation

Masked face recognition (MFR) is a major task, par-
ticularly during the global outbreak of COVID-19. One
intuitive approach to recognizing faces under a mask can
be a segmentation-based strategy that first detects the oc-
cluded region part and uses only the non-occluded part or
intends to recover an occlusion-free face from the occluded
mask face.

[19], Used a modified version of Unet to process masked
face images, and then a binary segmented mask region
is used to inpaint fine facial detail while maintaining the
global coherence of the face. IAMGAN was proposed by
[21] as a solution to the issue of insufficient data as well
as an improvement to the discriminative capacity of MFR
models. Training of a segmentation network generates the
mask region. [22], proposed a new 3D reconstruction-
based method to remove masks from face images. The
model uses residual blocks to segment masks. In [23],
segmentation of mask areas from masked face images is
achieved through the utilization of the grab-cut method
[24]. These studies demonstrate good results in the syn-
thetic masked face dataset. These models are unable to
generate an appropriate segmentation map of the mask
object when applied to real mask pictures that have a va-
riety of forms and structures.

2.2. Attention-based Methods

The human perception process inspires the attention
mechanism to allow the system to ignore irrelevant in-
formation and focus on the most important local fea-
tures. Attention mechanisms have succeeded in many vi-
sual tasks, including semantic segmentation [25, 26] , ob-
ject detection [27], image classification [28], image genera-
tion, and self-supervised learning.

FocusNet [29] is a fully convolutional network that in-
corporates attention into segmenting medical images based
on feature maps generated by a convolutional autoen-
coder. [30] Developed a dual attention network that com-
bines position attention with channel attention to segment
scenes based on interdependent channel maps. Zhang
et al. [23] presented a masked face recognition system
called AMaskNet, which includes a feature extractor and
a contribution estimator module that utilizes attention-
awareness. The contribution estimator includes attention
mechanisms for both spatial and channel dimensions. Li
et al. [31] developed a method for mask face recognition
that cropped the input image to focus on the region around
the eyes. As part of the attention-based component, they
used a convolutional block attention module (CBAM) [32].

2.3. Masked Face Datasets

Inspired by the COVID-19 pandemic, people wear face
masks. In such a scenario, a large dataset of masked faces
is essential for deep-learning models to detect people wear-
ing masks. Although various face databases have become
publicly available in recent years, new large-scale datasets
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are required to identify masked faces. We first break down
masked face datasets into real or simulated.

2.3.1. Real Datasets

MAFA dataset [33] contains around 35806 images of
masked faces with a diverse orientation of faces and
a degree of occlusion. The dataset was generated by
collecting images from various sources on the internet.
MFDD(Masked Face Detection Dataset) [34] is an insight-
ful dataset consisting of around 24500 masked face images.
It will be highly beneficial to train models for masked face
detection. Typically, gallery images are biased toward the
Chinese face.

RMFRD(Real-World Masked Face Recognition
Dataset) [34] includes 5,000 photos of 525 individu-
als wearing masks and 90,000 photos of the same 525
individuals without masks. With the limited number of
masked faces, this dataset is not appropriate for detection
tasks because it does not provide the coordinates of a
rectangle outlining the mask area, but it is helpful for
face recognition.

2.3.2. Simulated Datasets

Wang et al. [34] created a simulated masked face dataset
that included 500,000 face photos from 10,000 different
people. The photos included in the collection were from
two different datasets: LFW [35] and Webface [36].

Based on the Flickr Faces HQ (FFHQ) [37] dataset,
MaskedFace-Net [38] comprises 137,016 photos of correctly
and badly worn masks. The collection includes both prop-
erly and incorrectly worn masked faces, as well as no
masked faces.

An overview of the different datasets described in this
section is illustrated in Table 1.

3. Proposed Dataset

During the covid-19 era wearing face masks posed new
challenges to face-related tasks, including facial recogni-
tion, face inpainting, expression recognition, and object
removal.

Mask region segmentation is a preliminary stage to
tackle the occlusion issue corresponding to the face-related
tasks [22]. Existing masked face datasets are not procedure
binary segmentation maps because Segmenting mask re-
gions manually is a time-consuming operation. As a result,
existing unmasking methods [19, 22, 39, 40, 38, 18] syn-
thesize training data by overlaying masks on existing face
datasets. However, since these techniques rely on an artifi-
cially generated mask, their effects tend to seem unnatural.
[41]. To address this issue, the masked face segmentation
dataset(MFSD) provides the first public training dataset
for the mask segmentation task. We present data collec-
tion process, mask annotation and Dataset Statistics:

3.1. Data collection process

A Python crawler script searches vast amounts of Inter-
net data for front-face photographs of notable figures and
related masked-face images. The data collection process
involved the following steps:

� Image Collection: Over 25000 face images were col-
lected using a python crawler tool from Internet re-
sources like Google search engines and Instagram.

� Automatic Filtering: To ensure dataset quality, we
employed the AIZoo face-mask detector [42] to auto-
matically filter out irrelevant or non-masked images,
resulting in a refined dataset.

� Final Dataset: After this filtering process, we
retained a total of 11,601 images featuring 12,758
masked faces. Some illustrative examples of these
masked faces are presented in Figure 1.

3.2. Mask annotation

We used the LabelMe toolbox [43] to manually seg-
ment the mask area of 2750 faces in our dataset. We
train a model using the labeled samples of this dataset
and predict the mask region of unlabeled samples. The
model could not segment all the images correctly. As
a result, in order to ensure the quality of the anno-
tation, we used two experienced annotators to double-
check the errors made by machines. The dataset creation
process took approximately 6 months. Our datasets of
masked faces with mask region labels will be available at
https://github.com/sadjadrz/MFSD. Figure 2 shows some
sample images and their corresponding labels from our
proposed dataset.

3.3. Dataset statistics

In this section, we present comprehensive statistics
about the MFSD dataset, including image sizes, face ori-
entations, the distribution of masked faces per image, and
mask types.

� Image sizes: After obtaining the images, those with
a size lower than 100Ö100 were eliminated. The di-
versity in image sizes is visually represented in Figure.
3a, while the average size of the images in the dataset
stands at 1024 Ö 1024 pixels.

� Face orientations: In Figure 3b, we present the data
on face orientations. The majority of faces within
the MFSD dataset are oriented directly forward, with
only a limited number showing a left or right orien-
tation. This diversity in orientations, including chal-
lenging cases like left-front and right-front faces, pro-
vides valuable opportunities to further evaluate their
robustness.

3
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Table 1: Major masked face datasets.

Dataset Year No. of Images No. of masked faces Real mask

MAFA [33] 2017 30811 35816 yes
MFDD [34] 2020 24771 - yes
RMFRD [34] 2021 5000 5000 yes
SMFD [34] 2020 500000 500000 no
Masked Face-Net [38] 2021 137016 137016 no

Figure 1: Masked faces from our proposed dataset.

� Number of masked faces per image: The bar
plot titled ’Number of masked faces per image’ as de-
picted in Figure 3c, provides a visual representation of
the distribution of the number of faces present within
each image in the MFSD dataset. Each bar on the
plot corresponds to a specific count of masked faces,
and the height of each bar indicates the frequency of
images with that particular count of faces.

Upon examination of the plot, it becomes evident that
the majority of images contain a single masked face, as
indicated by the tallest bar. However, a non-negligible
number of images feature multiple masked faces, rep-
resented by the bars to the right of the plot. This
distribution sheds light on the prevalence of various
face counts within the dataset and serves as valuable
insight for understanding the dataset’s composition.

� Mask types: The Mask Types pie chart, as pre-
sented in Figure 4, offers valuable insights into the
distribution of different types of masks within the
MFSD dataset. This chart illustrates the frequency
with which various mask types are represented among
the masked faces.

As we can observe from the chart, different mask types
are encountered in the dataset, each with its own
prevalence. The chart segments are divided to repre-
sent specific mask categories, such as surgical masks,
N95 masks, cloth masks, and others, including unique
designer masks. The size of each segment corresponds
to the proportion of images featuring that particular
mask type.

For instance, the dominant presence of cloth masks is
clearly depicted by the largest segment in the chart.
On the other hand, smaller segments represent less
common mask types within the dataset.

Understanding the distribution of mask types is essen-
tial in characterizing the dataset’s composition and
provides valuable context for researchers and practi-
tioners working on tasks related to masked face recog-
nition, segmentation, or analysis. This information
aids in adapting algorithms and models to accommo-
date the variations in mask types, ensuring robustness
and accuracy in real-world applications where differ-
ent mask types may be encountered.

Original Image Segmentation Map

(a)

(b)

Figure 2: (a) and (b) are the original masked face images from
MFSD; In the segmentation step, the top row is cropped faces, the
second row is the face mask label of all faces in the original image.
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Figure 3: Dataset Statistics: (a) Image Sizes, (b) Face Orientation,
(c) Occurrence Counts

4. Methodology

This section begins by providing an overview of the
entire attention boundary-aware network (denoted as
ABANet) and then describe the details of the network.
After delving into the details of the network, we present
an in-depth description of the attention mechanism, which
plays a pivotal role in enhancing the network’s perfor-
mance. The network training loss is explained towards
the end of this section.

4.1. Overview of the Proposed Network

The network architecture of our improved model is il-
lustrated in Figure 5. Inspired by [44], our model com-
prises two stages: segmentation network and refinement
network, which take a whole image as input and predict
the saliency mask region in an end-to-end manner. Un-
like the work [44], the segmentation subnet is an encoder-
decoder network with an attention mechanism to identify
the boundary between the mask and non-mask regions.
The mask boundary was refined in the second stage using
a fully convolutional U-Net like network.

4.2. Segmentation Network

The proposed segmentation network comprises three
main parts: an encoder part, a decoder part, and an at-
tention module. The encoded part was processed with six
residual layers. At first, images are fed to 64 convolu-
tional filters with a size of 3Ö3 and stride of 1. the first

68%

3%

25%

2%
2%

Cloth

N95

Surgical

KN95

Other

Figure 4: Distribution of Mask Types in the Dataset

four stages are similar to ResNet-34 [45]. The fifth and
sixth levels each include 512 filters and three fundamen-
tal res-blocks. In order to connect the encoder and the
decoder, the bridge was constructed. It has three convolu-
tional layers, each with 512 dilated 3Ö3 filters, for a total
of 512 filters. Same as the encoder, the decoder has six
stages. The first two stages consist of three convolution
layers followed by a bilinear upsampling. The input of the
first layer of the decoder comprises the concatenated fea-
ture maps from the corresponding stage in the encoder,
acquired at the same spatial resolution as the current de-
coder stage during encoding. Additionally, it includes the
feature maps from the last layer of the preceding decoder
stage, embodying the high-level abstract features captured
by the previous decoder stage. For other stages, the at-
tention gate (AG) is added to our segmentation network
to highlight salient features that are passed through the
skip connections. By focusing on features closer to high-
resolution feature maps, the AG optimizes the network’s
ability to capture intricate facial details and mask bound-
aries, all while maintaining computational efficiency. The
Attention Gate can be summarized as follows figure 6. It
can be observed that introducing an attention gate sig-
nificantly enhances IoU. The output from the segmenta-
tion module’s final stage is processed by a 3Ö3 convolution
layer located at the decoder’s conclusion before being for-
warded to the refinement module.

4.3. Refinement Network

Similar to [44], the refinement network is designed using
a residual encoder-decoder framework. Both the encoder
and decoder are composed of four levels. Each level has a
convolutional layer with 64 filters measuring 3Ö3, followed
by normalization in batches and a ReLU activation func-
tion. Integrating high-level features with low-level features
helps refine the object boundaries.

4.4. Attention Mechanism

The Attention Gate (AG) serves as a fundamental com-
ponent within our segmentation network, significantly en-
hancing the precision of boundary-aware segmentation. As
depicted in Figure 6, which illustrates the architecture of
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Figure 5: Architecture of our proposed ABANet network.

Figure 6: Schematic of the Attention Gate.

the Attention Gate, this mechanism plays a crucial role
in focusing the model’s attention on salient regions, ulti-
mately leading to more accurate and detailed segmentation
results.

4.4.1. Architecture of the Attention Gate

The Attention Gate’s architecture, outlined in Figure 6,
comprises distinct elements that collectively contribute to
its functionality:

� W G and W X: As illustrated in Figure 5, the At-
tention Gate takes two sets of feature maps as input.
These two feature maps are denoted as ’G’ and ’X’,
as shown in Figure 6. The ’G’ feature map originates
from the decoder part of our network, while ’X’ is ob-
tained from the previous layer in the decoder. Both
’G’ and ’X’ are processed using convolutional layers,
yielding ’W G’ and ’W X’ feature maps, respectively.
Specifically, ’G’ utilizes a convolutional layer with a
kernel size of 1 and a stride of 1, while ’X’ employs a
convolutional layer with a kernel size of 1 and a stride
of 2. These specific settings enable the layers to effec-
tively extract essential information from both feature
maps, which is integral to the attention mechanism’s
functionality.

� Element-wise Sum and ReLU: After processing,
the results from ’W G’ and ’W X’ are element-wise
summed and then passed through a Rectified Linear
Unit (ReLU) activation function. This step facili-
tates the integration of information from both feature
maps while introducing non-linearity into the atten-
tion mechanism.

� Psi (ψ) Calculation: Figure 6 also showcases how
the combined result undergoes further processing
through a convolutional layer. The application of a
sigmoid activation function results in the generation
of the attention map ψ, as illustrated in the figure.
This attention map acts as a guiding mechanism for
the model, directing its focus towards the most rele-
vant spatial locations within ’X’.

� Upsampling: To ensure that the attention map
aligns with the original input dimensions, Figure 6
indicates the application of an upsampling operation
to ψ. This scaling operation restores the attention
map to the same resolution as the input feature maps,
aligning it with the spatial features of the original
data.

� Element-wise Multiplication with ’X’: After the
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upsampling step, the output of the previous step is
element-wise multiplied with This operation mod-
ulates the information in ’X’ based on the atten-
tion map’s guidance, resulting in a refined feature
map that emphasizes salient spatial locations. This
element-wise multiplication ensures that the final out-
put retains the spatial structure and dimensions of the
original ’X’ feature map while emphasizing relevant
information.

4.4.2. Integration into the Segmentation Network

Figure 6 provides an overview of the seamless integra-
tion of the Attention Gate into our segmentation network.
As illustrated, multiple instances of the Attention Gate
are strategically inserted at various points within the net-
work architecture. This integration allows the model to
adaptively attend to different scales and features, with a
particular emphasis on salient regions and the intricate
boundaries between mask and non-mask regions.

4.4.3. Choice of Feature-Wise Attention over Spatial At-
tention

In our ABANet design for mask face segmentation, we
intentionally opted for feature-wise attention over spatial
attention. This choice is underpinned by several key ad-
vantages:

� Enhanced Discriminative Power: Feature-wise atten-
tion allows the network to independently weigh the
importance of each feature channel. This fine-grained
control enables the network to emphasize specific dis-
criminative features, such as facial edges and bound-
ary information, essential for precise boundary-aware
segmentation.

� Adaptability to Complex Structures: Mask face seg-
mentation often involves intricate facial features and
contours, which spatial attention mechanisms may
struggle to capture adequately. Feature-wise atten-
tion excels in adaptability, dynamically emphasizing
critical features, even when spatially distributed in a
complex manner.

� Mitigation of Spatial Variability: Feature-wise atten-
tion is less sensitive to spatial variations in face ori-
entation, scale, or position within the image. Operat-
ing on feature channels independently, it enhances the
network’s robustness across diverse input conditions
frequently encountered in real-world scenarios.

In summary, Figure 5 provides a visual representa-
tion of the Attention Gate’s architecture and its integra-
tion within our proposed segmentation network. This at-
tention mechanism significantly enhances boundary-aware
segmentation, leading to remarkable improvements in seg-
mentation accuracy.

4.5. Hybrid Loss

We propose a hybrid loss function made of three com-
ponents: focal loss, SSIM loss, and IoU loss, to provide
superior regional segmentation and accurate boundaries.
Our model has eight outputs, as shown in Figure 5. Thus,
the whole segmentation loss can be described as:

Loss =

N∑
n=1

Loss(n) (1)

Loss(n) = Loss
(n)
focal + Loss

(n)
ssim + Loss

(n)
iou (2)

where, Loss(n) is the side output loss for the n-th output,
and N is the overall number of outputs.

We leverage the focal loss as a pixel-level loss, to cope
with low-confidence labels. It is defined as:

Lbinary−focal =

{
−α(1− y′)γ log(y′), y = 1

−(1− α)(y′)γ log(1− y′), y = 0
(3)

where, y is the ground truth and y′ is the prediction. To
determine the value of α, we set up the ABANet when
α={0.3, 0.5, 0.75 , 0.9} while γ = 2 and shows the quan-
titative comparison in Figure 7. In order to keep perfor-
mance at an appropriate level, we set the α = 0.3 on the
basis of this comparison.

The SSIM loss is concentrated at the patch level, which
can be utilized to capture the structural data to obtain
a more detailed boundary prediction [46]. The SSIM loss
definition is expressed in Eq. (4).

SSIM = 1− (2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4)

The covariance of x and y is represented by σxy. The mean
and standard deviation of x and y are represented by µx,
µy, σx, and σy, respectively. In order to prevent division
by zero, we empirically fixed C1 = 0.012 and C2 = 0.032
in this paper [47].

The IoU loss is at map-level, thus focus on the fore-
ground. IoU loss function is expressed by

IoU = 1−
∑H

r=1

∑W
c=1 S(r, c)G(r, c)∑H

r=1

∑W
c=1[S(r, c) +G(r, c)− S(r, c)G(r, c)]

(5)

where r and c represent the row and column indices, re-
spectively. Specifically, r corresponds to the row index of a
pixel in the image, and c corresponds to the column index
of that pixel. G(r,c) represents the Ground Truth (GT) la-
bel of the pixel located at row r and column c, while S(r,c)
represents the predicted probability of the segmented ob-
ject at the same pixel location.

5. Experiments

In this section, we performed experiments to compare
the performance of MFSD with 10 state-of-the-art deep
learning models for segmentation, which were selected as
baseline approaches for evaluation of our proposed net-
work.
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Figure 7: Quantitative comparison of α for focal loss.

5.1. Experimental Settings

In the training process, we split 12758 labeled images
into three groups: the training set (8500 images), the
validation set (2500 images), and the test set (1758 im-
ages). We train all models with ImageNet [48] pre-trained
encoders. The calculation of the intersection-over-union
(IoU) metric involves measuring the overlap between pos-
itive labels in a binary segmentation map. IoU is a fre-
quently used standard statistic for assessing image seg-
mentation techniques. All the networks are implemented
in the segmentation models library based on Pytorch [49].
The training batch sizes were 8. We utilized the Adam
optimizer [50] with a learning rate of 10−4 to optimize the
parameters. As input, the model received images of 256 Ö
256 pixels.

We train models using multiple backbones, including
vgg19, resnet50, and efficientnet.

5.2. Evaluation Metrics

We employed several metrics to comprehensively evalu-
ate the performance of our network. These metrics include
both traditional and specialized measures for semantic seg-
mentation tasks. Here, we provide details on the five met-
rics used for evaluation:

5.2.1. Traditional Metrics

Intersection over Union (IoU) serves as the primary eval-
uation measure for semantic segmentation. Additionally,

we calculate the following standard metrics [51]:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1− score =
2 · TP

2 · TP + FP + FN
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

IoU =
TP

TP + FP + FN
(10)

5.2.2. Additional Metrics

In addition to the traditional metrics, we incorporated
the following specialized metrics to provide a more com-
prehensive assessment:

MAE =
1

HW

H∑
i=1

W∑
j=1

|S(i, j)−G(i, j)| (11)

whereMAE represents the Mean Absolute Error, calcu-
lated as the average pixel-wise absolute difference between
the predicted map S and the ground truth image G. W
and H are the width and height of the saliency map and
(i, j) denotes the pixel coordinates.

The S-measure, as described in the work by [52], quan-
tifies the structural similarity between the predicted map
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Table 2: A quantitative comparison of the results obtained on the MFSD test set using a variety of
techniques for image segmentation.

Model Backbone IoU F1-score Precision Recall Acc

Unet Efficient-b7 89.516 94.469 91.507 97.63 96.115
Unet ResNet50 89.188 94.299 91.463 97.318 96.032
Unet VGG19 89.208 94.302 91.28 97.533 96.012
Unet++ Efficient-b7 89.524 94.47 91.565 97.567 96.129
Unet++ ResNet50 88.526 93.928 90.952 97.106 95.678
Unet++ VGG19 89.242 94.329 91.602 97.225 95.998
MAnet Efficient-b7 89.587 94.507 91.667 97.529 97.159
MAnet ResNet50 89.61 94.21 91.218 97.405 95.934
MAnet VGG19 89.242 94.339 91.45 97.418 95.999
Linknet Efficient-b7 89.484 94.464 91.629 97.482 96.113
Linknet ResNet50 89.011 94.202 91.427 97.152 95.904
Linknet VGG19 89.064 94.239 91.652 96.978 95.905
DeepLabV3+ Efficient-b7 89.242 94.353 91.45 97.448 95.999
DeepLabV3+ ResNet50 89.463 94.46 91.46 97.665 96.083
PAN ResNet50 89.312 92.967 91.522 97.435 96.033
PAN VGG19 89.466 94.457 91.52 97.59 96.107
EINet ResNet50 91.435 96.576 95.341 97.845 97.2
EU-Net ResNet-34 88.834 94.11 91.09 97.352 95.875
DAD ResNet50 93.24 96.598 95.57 97.649 97.39
BASNet 91.68 95.488 94.754 96.235 96.787

Ours 93.814 96.817 97.164 96.474 97.623

Table 3: Performance Comparison of the Top Five
Models on additional metrics.

Model MAE Fβ Sm

EINet 0.026 0.955 0.957
EU-Net 0.035 0.915 0.872
DAD 0.027 0.957 0.96
BASNet 0.018 0.948 0.953
Ours 0.014 0.971 0.968

S and the ground truth image G by taking into account
object-aware and region-aware aspects.

S-measure = α · So(S,G) + (1− α) · Sr(S,G) (12)

Where So represents the object-aware structural similarity,
Sr represents the region-aware structural similarity, and α
is a parameter. In accordance with prior work [52], we
have chosen to set α to 0.5, which determines the balance
between the importance of these structural similarities.

The F-measure represents a balanced combination of
precision and recall, calculated based on the predicted
maps and the ground truth images using the following for-

mula:

Fβ =
(1 + β2) · Precision · Recall
β2 · Precision + Recall

(13)

Here, we set the value of β2 to 0.3, as recommended in
[53], to emphasize the importance of precision.

Contrary to Fβ and Sm, a lower MAE value signifies
superior performance. We employed the implementations
provided by [53] to calculate Fβ , Sm, and MAE for our
results.

5.3. Comparison with state-of-the-art models

On our masked face segmentation dataset, we con-
duct a comparison of our network with other state-of-the-
art approaches using the same training configuration of
300 testing images. Segmentation models are Unet[54],
Unet++[55], Linknet[56], MAnet[57], PAN[58], EINet[59],
EU-Net[60], DAD[61], DeepLabV3+[62] and BASNet [44].
Also, we evaluate models on different backbones, such as
ResNet-50, VGG19, and Efficient-b7.

Quantitative Evaluation: as shown in Table 2, the
evaluation metrics were calculated and summarized For
quantitative comparisons. The best scores are highlighted
with bold. As can be observed from Table 2, our proposed
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ABANet achieved 93.814, 96.817, 97.164, and 97.623 in
terms of IoU, F1-score, precision, and accuracy, respec-
tively, which were superior to those of other methods. The
IoU and F1-Score of the proposed network were approxi-
mately 4% and 2%, respectively higher than those of the
classical networks like Unet, Unet++, and Linknet, which
implied that the proposed refinement network can help ef-
ficiently. Compared to newer methods like DAD, EU-Net,
and EINet, the proposed network showed marginal im-
provements in the result, which indicates that hybrid loss
is suitable for mask region segmentation. Compared with
BASNet [44], a better comprehensive segmentation perfor-
mance is achieved through our network, which is relatively
0.239% to 2.41% higher with different evaluation indica-
tors. It is demonstrated that attention block capture more
contextual information and is beneficial for segmentation
tasks.

In order to gain a deeper understanding of the perfor-
mance of the models evaluated in our study, we provide a
qualitative comparison based on the performance metrics,
specifically Mean Absolute Error (MAE), Fβ score, and
S-measure (Sm). The Table 3 displays the performance
results of the top five models from Table 2. Notably, our
model excels with the lowest MAE of 0.014, emphasizing
superior pixel-wise performance. Furthermore, it achieves
the highest Fβ score of 0.971 and an impressive S-measure
of 0.968, showcasing excellence in terms of boundary pre-
cision and structural similarity.

Qualitative Evaluation: Figure 8 provides qualitative
comparisons between our ABANet and five other methods.
As shown in Figure 8, the EU-Net, and U-Net++ methods
are marginally less effective in segmenting mask regions,
and the segmentation results appear noisy. As mentioned
earlier, the state-of-the-art suffers from over-segmentation
or under-segmentation when dealing with the mask cov-
ered by an object or hand. In contrast, our approach can
precisely preserve the face mask’s boundaries and struc-
tures. It can be observed from the red boxes that our net-
work is more robust in describing boundaries and edges
than BASNet.

To sum up, our ABANet has the ability to handle a wide
variety of challenging cases, such as masks with different
characteristics (e.g., color, size) and low resolution.

5.4. Comparison with Masked Face Segmentation Models

In this section, we provide a comprehensive compari-
son of our proposed ABANet with four existing masked
face segmentation models. This comparison aims to eval-
uate ABANet performance in the context of masked face
segmentation. While ABANet has demonstrated its supe-
riority with overall image segmentation approaches, it is
essential to assess its performance within the domain of
masked face segmentation networks. This section focuses
on the comparative analysis of out approach and other
masked face segmentation models.

The training process aligns with the procedures detailed
in the experimental settings section. To ensure the stabil-

ity and consistency of our results, we performed a series
of five trials for each experiment. For each trial, we ran-
domly initialized the model weights and split the dataset
into training, validation, and test sets. Subsequently, we
computed the mean value for each metric across all tri-
als and determined the corresponding standard deviation.
This comprehensive approach enhances the robustness of
our assessment of the model’s performance, effectively ac-
commodating variations that may arise due to differing
random initializations or dataset splits.

DIN et. al [19] and Geng et. al [21] employ U-Net-
based segmentation networks for mask region segmenta-
tion, while [63] utilizes the Mask-RCNN [64] model. In
contrast, [23] employs the Grab-Cut[24] method for mask
region segmentation in the context of masked face recog-
nition.

As can be seen in Table 4, ABANet outperforms all the
tested face mask region segmentation models in terms of
the IoU, F1-score, Fβ and MAE metrics. ABANet achieves
IoU, F1-score, Fβ and MAE scores of 93.4%, 96.5%, 96.8%
and 1.4% which is 2%, 0.3%, 1.3% and 1.2% better than
the scores of the second-best method (i.e., Sola and Gera
[63]).

In addition to other performance metrics, we assess the
model’s inference speed, quantified in Frames Per Second
(FPS). FPS is an indicator for evaluating the efficiency of
image segmentation. A higher FPS value signifies a faster
inference speed. When comparing our method to Zhang
et al.’s [23] approach, although the FPS of this method
is higher, our method exhibits a superior performance in
the other four evaluation metrics, achieving an average
improvement of 10 percent.

Figure 9 presents a selection of representative images
obtained through the masked face segmentation methods
described in Table 4, along with results from our proposed
method. To conduct a detailed analysis, we deliberately
chose challenging masks with unconventional shapes and
designs. It can be seen from 9, ABANet can outperform
other masked face segmentation network when encounter
with different mask design and shape. Specifically, our
network excels in the precise segmentation of entire mask
regions while also providing clear and accurate boundary
predictions

5.5. Ablation study

In this section, to further evaluate the effectiveness of
ABANet, we conducted ablation studies using the pro-
posed dataset as examples.

To better show the influence of the refinement Net-
work and the attention gate, we report the quantitative
comparison results in Table 5. First, we conducted
the baseline network without any module, which is a
segmentation network of our proposed ABANet. Next,
we added the refinement network on this baseline. Then,
three attention gates are employed in our segmentation
network. Finally, attention gate and refinement network

10



Original
Image

Ground
Truth

Ours

BASNet

DAD

EU-Net

EINet

U-Net++

Figure 8: Qualitative comparison of MFSD test set results with cutting-edge image segmentation algorithms. The first two rows display
the original photos and the matching ground truth. Rows 3 to 8 illustrate the segmentation results respectively derived from the proposed
method, BASNet, DAD, EU-Net, EINet, and U-Net++. Red boxes indicate the fine distinction between the ground truth, the BASNet, and
the proposed method.

are combined. Numerical results are shown in Table 5,
and the best values are marked in bold. It can be observed
that the proposed ABANet brings the most gains in IoU,
F1-score, recall, and accuracy. This indicates that AG

and the refinement network allow the network to have a
stronger ability to detect more changed areas and capture
more contextual information respectively.
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Table 4: Comparison with masked face segmentation models on our MSFD dataset

Paper IoU F1-score MAE Fβ FPS

DIN et. al [19] 90.3± 0.6 95.7± 0.4 0.043± 0.02 92.7± 0.4 105
Zhang et. al [23] 81.2± 1.4 88.66± 0.8 0.172± 0.08 82.5± 0.6 273
Geng et. al [21] 88.9± 0.4 94.2± 0.3 0.067± 0.06 91.9± 0.3 115
Sola and Gera [63] 91.4± 0.2 96.2± 0.3 0.027± 0.03 95.6± 0.5 66
ours 93.4± 0.6 96.5± 0.4 0.014± 0.02 96.8± 0.4 75

Table 5: The performance of different configurations of ABANet.

Method IoU F1-score Precision Recall Acc

baseline 91.047 94.99 94.254 95.745 96.185
baseline+refinement 91.73 95.542 94.859 96.235 96.787
baseline+AG 92.425 96.73 97.28 96.188 97.256
ABANet 93.814 96.817 97.164 96.474 97.623

Table 6: Ablation study results comparing different attention gate jump connection stages in ABANet.

Attention gate jump connection stages Metrics

3 4 5 6 IoU F1-score Acc

× × ✓ ✓ 92.75 95.638 97.308
× ✓ ✓ ✓ 93.814 96.817 97.623
✓ ✓ ✓ ✓ 93.588 96.72 97.671

Table 7: ABANet performance with various input picture resolutions.

Input size

128 Ö 128 256 Ö 256 512 Ö 512

IoU 92.576 93.814 93.241
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Table 8: The performance of different optimizer.

Optimizer IoU F1-score Acc

SGD 93.182 95.72 97.32
Adamax 93.584 96.432 97.531
RMSprop 93.635 96.509 97.75
Adam 93.814 96.817 97.623

Table 9: Effect of various loss functions on ABANet performance.

Losses IoU F1-score Acc

Focal 88.879 92.84 95.4
IoU 90.32 93.79 94.27
Focal + IoU 91.262 94.18 95.9
Focal + SSIM + IoU 93.814 96.817 97.623

In ABANet, attention gates are incorporated to selec-
tively emphasize relevant features while suppressing irrel-
evant ones, thereby enhancing the segmentation perfor-
mance. The question addressed in this ablation study con-
cerns the optimal stage at which the attention gate should
be introduced within the network architecture. The table
6 showcases the evaluation metrics obtained for different
combinations of attention gate involvement across jump
connection stages. Each row in the table represents a spe-
cific configuration of attention gate engagement, denoted
by checkboxes (✓) or crosses (×) corresponding to the
presence or absence of the attention gate at each jump con-
nection stage. Overall, the results suggest that integrating
attention gates from fourth jump connection stages yields
improvements in segmentation performance, as evidenced
by higher IoU and F1-score.

For evaluating the stability of the network, we trained
the ABANet with 3 different input sizes, including 128
Ö 128, 256 Ö 256 and 512 Ö 512. Based on the data
presented in Table 7, the input size of 256 Ö 256 obtains
the best IoU.

In this article, we use Adam as our optimizer. We
also comprise different major optimizers: Adam, Adamax,
RMSprop, and SGD in Table 8. the Adam optimizer out-
performed other optimizers.

In order to illustrate the efficacy of our suggested hy-
brid loss, we perform an ablation study on losses with the
same experimental setup. Table 9 provides the comparing
results. It can be observed that both focal loss and IoU loss
have similar performance in terms of F1-score and accu-
racy metrics. However, when it comes to the IoU measure,
IoU loss outperforms focal loss. When we mix focal loss
and IoU loss, all metrics increased slightly. To propose a
final hybrid loss, we use SSIM with two other losses. Ta-
ble 9 indicates that by equipping hybrid loss on ABANet
performance improve greatly. It is due to utilizing SSIM
loss and obtaining more detailed boundary prediction.

6. Conclusion

In this article, we suggested an ABANet architecture
with a hybrid loss for mask face segmentation. Firstly, we
adopted an attention gate in skip connections to capture
more specific information. Experimental results show that
ABANet can obtain superior segmentation performance
by adding a series of AG modules to the skip connections.
In addition, the hybrid loss is utilized to evaluate training
at the pixel, patch, and map levels, maintaining training
stability and adjusting to unbalanced positive and negative
sample distributions.
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Figure 9: visualization of the inference results obtained by our proposed model under challenging mask designs and shapes, compared to four
masked face segmentation models.

There has been minimal progress in masked face-related
activities due to the absence of a large-scale, annotated
collection of masked faces. To bridge this gap, we proposed
a new instance segmentation dataset encompassing 11601
images and 12758 masked faces. We believe this dataset
can facilitate the development of face-related tasks with
mask occlusion.

To balance network complexity and accuracy gains, we
will explore different techniques and improve our attention
mechanism in future research. Besides, we intend to design
and train a GAN network based on the dataset and method

we have proposed to reconstruct mask regions and increase
the accuracy of masked face recognition.
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